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Abstract

We study the problem of learning Bayesian-optimal revenue-maximizing auctions.
The classical approach to maximizing revenue requires a known prior distribution
on the demand of the bidders, although recent work has shown how to replace
the knowledge of a prior distribution with a polynomial sample. However, in an
online setting, when buyers can participate in multiple rounds, standard learning
techniques are susceptible to strategic overfitting: bidders can improve their long-
term wellbeing by manipulating the trajectory of the learning algorithm through
bidding. For example, they may be able to strategically adjust their behavior in
earlier rounds to achieve lower, more favorable future prices. Such non-truthful
behavior can hinder learning and harm revenue. In this paper, we combine tools
from differential privacy, mechanism design, and sample complexity to give a
repeated auction that (1) learns bidder demand from past data, (2) is approximately
revenue-optimal, and (3) strategically robust, as it incentivizes bidders to behave
truthfully.

1 Introduction

When we observe prices in market settings—stock exchanges, farmers’ markets, ad auctions—we
understand that these prices were not chosen arbitrarily. Rather, the seller (auctioneer, market maker,
etc.) selected these prices after observing a stream of previous transactions, which provide relevant
information about the demands of buyers that are key to maximizing income as well as managing
available inventory. The process of setting prices from a growing database of previous sales is
fundamentally a learning problem, with all of the typical tradeoffs akin to bias versus variance, etc.
In the case of repeated auctions, however, there is one additional challenge: market participants are
often quite aware of the underlying learning procedures employed by the auctioneer and can seek
to benefit using deceptive bidding strategies. Buyers, in other words, can aim to induce overfitting,
introducing additional hurdles to learning problem at hand.

Under bayesian assumptions, and in a batch setting where agents only act once, auction pricing
has been well-understood since the work of Myerson [39], who characterized the revenue-optimal
scheme as a function of the prior distribution of values of the bidders. Frequentist alternatives to
this model have been introduced in recent years [21, 13, 4, 18, 37, 5, 38, 25, 17, 23], with the
goal of designing auctions with good revenue guarantees if one does not have a prior but instead is
given only samples from the underlying distribution. These methods, however, still imagine only a
one-shot mechanism and are not robust to multi-round strategic behavior of bidders.

This paper studies the design of multi-round auction-learning algorithms that exhibit theoretical
guarantees that limit a buyer’s ability to manipulate the mechanism towards their own benefit. Our
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results aim to nudge the development of optimal auctions closer to realistic environments where
such mechanisms are deployed. We employ tools from differential privacy as our core technique
to control the impact of any individual buyer’s strategy on her utility in future participation. A
differentially private mechanism ensures that that the output of a computation has only a small
dependence on any one input data point. Privacy has been previously used as a tool to achieve
truthfulness in a variety of game theoretic environments [14], including mechanism design [33, 40],
mediated games [29, 16], and market design [15, 28, 44, 12]. Our seller’s learning algorithm is
differentially private with respect to bid data, which limits the effect of each player’s bid on future
choices of single-round auctions, thus disentangling incentives across rounds. In this sense we use
differential privacy not as a tool for information security but instead for robustness; this in turn yields
the desired incentive guarantees.

Our two main results are the first computationally tractable algorithms for learning nearly-optimal
Bayesian revenue-maximizing auctions with an approximate truthfulness guarantee. We first give a
learning algorithm for which there exists an approximate equilibrium in which all bidders report their
true values. Along the way to this result, we provide several useful technical lemmas for comparing
the revenue of mechanisms on two similar distributions, and comparing the revenue of two similar
mechanisms on any fixed distribution. These may find future applications of independent interest
beyond this work. Second, under an assumption limiting changes in buyer behavior from round to
round, we construct a mechanism for which there is an exact equilibrium where every bidder bids
within a small constant of their value, which also achieves a nearly optimal revenue guarantee. A
mechanism with this guarantee is substantially more complex to achieve, requiring arguments about
what bidders might learn about each other across rounds.

Related Work The classical Myerson auction [39] maximizes revenue when selling a single item
to buyers drawn from a fixed, known distribution. More recent work investigated how to maximize
revenue when that distribution is unknown but some small number of samples are available [21, 13,
4, 18, 37, 5, 38, 25, 17, 23] (or in an online model [9]). This line of work assumes every buyer in the
sample reported their values truthfully, rather than manipulating their reported data. If each buyer
appears in at most one auction, then they will not have incentive to misreport their bids. However,
strategic buyers participating repeatedly in these auctions may have incentive to manipulate their
behavior so as to guarantee themselves more utility in future rounds. We extend this line of work by
assuming each buyer can participate in several auctions, and so we must analyze bidders’ incentives
across rounds if we hope to learn a good auction from their past bidding behavior. Related line
of work includes dynamic auctions [42, 3, 36, 31] where the buyers are strategic about how their
behaviour today effects the seller’s behaviour in the future and [8] where the buyer uses a non regret
learning algorithm to bid across the rounds.

Our results are related to work on iteratively learning prices [7, 35, 10, 41], although these results
do not consider multiple appearances of bidders across rounds. Most closely related to our work is
that of Liu et al. [30], which assumes buyers may appear more than once, and finds no-regret posted
prices or anonymous reserves. We leverage several of their novel ideas, such as maintaining a dif-
ferentially private internal state to guarantee approximate truthfulness. Further, our work optimizes
over a substantially more complicated space of mechanisms.

With repeated appearances of each buyer, our auction learning problem comes to resemble dynamic
mechanism design. We therefore review some of the relevant literature. A truthful mechanism is
given in [6] that exactly maximizes social welfare in a dynamic environment, and [27, 43] extended
this mechanism to maximize revenue. In contrast, our mechanism approximately maximizes rev-
enue in a dynamic environment with much looser assumptions on buyers’ value distributions, but
compares to the weaker per-round benchmark of the optimal single-shot revenue. Epasto et al. [22]
takes a similar approach and proposes a dynamic mechanism for buyers who strategize across rounds
under a large market assumption. In contrast to our proposed mechanism, theirs will not generally
run in polynomial time. Additionally, we focus on mechanisms which explicitly limit an agent’s
ability to manipulate them.

2 Model and Preliminaries

The model We consider a T -round auction, where a seller sells a supply of J identical items to
n unit-demand bidders each round. For each round t and population i a value vi,t is sampled from
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a fixed distribution Di, representing the amount the bidder is willing to pay for the item. We let
D = D1 × · · · ×Dn denote the product distribution of value distributions, and we use v to denote
a vector of values sampled from this distribution. Further, we let v−i denote v with the i-th element
removed, and use (v′i,v−i) to denote the same vector with v′i replacing the i-th element.

We consider a setting similar to Liu et al. [30] where a bidder from any population may appear
several times over the course of the T rounds, drawing a fresh value each time.1 In this setting,
bidders may have an incentive to misreport their values in order to change the mechanism in future
rounds, and their potential reward for doing so depends on the number of future rounds in which
they expect to participate. Amin et al. [1] show that very little can be done when a bidder participates
in every round, so we assume this cannot occur. Formally:

Assumption 1. No bidder participates in more than k rounds of the T -round auction.

Mechanism Design Basics One can view a mechanism (auction) M := (x, p) as having two
components: (a) a possibly-randomized allocation rule x : V n → X , which takes in a vector of
values (bids) v and returns a feasible allocation of the items, where xi(v) is 1 if i receives the item
and 0 otherwise; and (b) a payment rule p : V n → Rn, which takes v and outputs a vector of
payments demanded of each player. Assuming, for the moment, that bidders bid their true values
v, we can define the expected revenue of a mechnamism M as the expectation of the payments
received,

Rev(M;D) := Ev∼D[
∑n
i=1 pi(v)].

We make the standard assumption that the participants have quasi-linear utility: for a vector of
bids v′ (which may not necessarily match the values v), a bidder’s utility for allocation xi(v′) and
payment pi(v) is

ui(x, p,v
′) = vi · xi(v′)− pi(v′).

We may now introduce the notion of a truthful mechanism. A mechanism M := (x, p) is
deemed truthful if, given a vector of true values v and some arbitrary vector of bids v′, each
agent receives no less utility bidding vi rather than v′i; that is, for every i, it must hold that
ui(x, p,v

′) ≤ ui(x, p, (vi,v′−i)).

Let us now recall a classical result in Bayesian-optimal mechanism design when the seller’s goal
is to maximize revenue. Myerson [39] essentially fully characterized the solution in this setting.
The interested reader can learn more in Hartline [24]; we briefly review these results here in two
pieces. The first piece states that payments in truthful mechanisms essentially depend solely on the
allocation function.

Theorem 2 (Payment Identity, Myerson [39]). A mechanism is truthful if and only if it has a mono-
tone allocation rule and payments which for all valuation profiles v satisfy

pi(v) = vi · xi(vi,v−i)−
∫ vi

0
xi(u,v−i)du+ pi(0,v−i).

The second key result is that for truthful mechanisms, the expected revenue can be written in terms
of welfare in a remapped virtual value space.

Theorem 3 (Myerson [39]). For any truthful mechanismM = (x, p) with values distributed ac-
cording toD, the expected revenue from player i can be written as Ev∼D[φi(vi)xi(v)], where φi(vi)
is the virtual value, given by φi(vi) = 1− 1−Fi(vi)

fi(vi)
. So, Rev(M;D) = Ev∼D[

∑
i φi(vi)xi(v)].

We will use the notation M∗D to denote the revenue-optimal mechanism for distribution D—
Myerson provides a precise construction of this auction.

Definition 4 (Myerson’s Auction). Fixing a prior distribution D, given a value profile v Myerson’s
revenue-optimal mechanism M∗D calculates virtual values φi(vi) = vi −

1−FDi
(vi)

fDi
(vi)

and (a) se-
lects the feasible allocation which maximizes virtual welfare according to the virtual values and (b)
charges payments according to the Payment Identity of Theorem 2.

1Our results can be shown to hold when values are not drawn fresh, in which case Di is the distribution of
drawn values, taking into account the process by which bidders are redrawn from population.
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Truthfulness and Dynamic Equilibrium The mechanism design preliminaries discussed previ-
ously are for one shot games where players do not observe past actions of others and adjust their
strategy accordingly. We now turn our attention to multi-round play, we need to expand our notion
of player behavior and strategy. We will now assume that a strategy for each bidder maps the history
of observed actions to contingency plans over actions in the current and future rounds: we assume
agents observe their own outcomes xti and pti in rounds in which they participate, but not the full
historical data used by the designer to produce the mechanism each round. A history hti in round
t for each agent i then consists of a bid, an allocation, and a payment for each round the agent has
participated in. Given a history hti, and value vti in the current round t for agent i, we denote agent
i’s strategy as σti(v

t
i ; hti). We suppress the dependence on the history when clear from context.

Note that because agents do not observe the historical bids of others, they must form probabilistic
beliefs about these bids, and we assume these beliefs are Bayesian in nature. Denote by µti(h

t
i)

the beliefs of agent i in round t after observing history hti. A profile of strategies is an equilib-
rium for this game if in every round t, every agent i, and every history hti that agent i might have
observed previously, agent i’s strategy maximizes their expected total utility over the current and
future rounds; the expectation is taken over the randomness of agent i’s beliefs as well as the future
values of all agents. Formally, let U ti (σ, v

t
i , h

t
i) denote the total expected utility of agent i in rounds

t, t+ 1, . . . , T given a value of vti in the current round and an observed history hti, playing strategy
σ.

Definition 5 (Perfect Bayesian Equilibrium (PBE)). A profile of strategies σ is an η-approximate
Perfect Bayesian equilibrium if for every agent i, round t, history hti for agent i in round t, value
vti for i in round t, the strategy σti(v

t
i ; hti) approximately maximizes agent i’s total expected utility

from future rounds up to an additive η. That is, U ti (σ
t
i(v

t
i ; hti), v

t
i , h

t
i) ≥ U ti (σ′, vti , hti)−η for every

alternate strategy σ′. If η = 0, we say that σ is an exact Perfect Bayesian Equilibrium.

In other words, a PBE is a strategy σ such that, for every bidder i and for every history of the game,
if all other bidders besides i behave according to the strategy σ, then playing σi is approximately
utility-maximizing behavior for bidder i.

Definition 6 (η-utility-approximate BIC). A mechanism is η utility-approximately Bayesian incen-
tive compatible if the strategy profile where every agent bids truthfully in every history is an η-
approximate Perfect Bayesian equilibrium.

We also consider a more robust notion of incentive compatibility, where there exists an exact equi-
librium with each agent bidding η-close to her true value, a notion also used in Liu et al. [30].

Definition 7 (η-bid-approximate BIC). A mechanism is η bid-approximate BIC if ∃ an exact PBE
where each bidder bids within η of their value in every history.

Definition 6 guarantees that all bidders bidding truthfully in all rounds is an (approximate) Bayes-
Nash equilibrium (BNE). In proving a mechanism utility-approximate BIC, one therefore may as-
sume bidders report truthfully in future rounds. Consequently, the only impact an agent’s bid has
on their future utility is through their impact on future mechanisms. Definition 7 guarantees the
existence of an exact equilibrium in which all bidders bid within η of their value. Therefore, mech-
anisms with this guarantee will need to ensure bidders do not change their behavior in later rounds
to influence other bidders’ behavior in earlier rounds.

Differential Privacy Background We now provide some basics on differential privacy, our main
technique that helps guarantee approximate truthfulness in equilibrium. We refer to a database
Z ∈ Zn as a collection of data from n individuals, and we say that two databases are neighboring if
they differ in at most one entry.

Definition 8 (Differential Privacy [19]). An algorithm (mapping) A : Zn → R is (ε, δ)-
differentially private if for neighboring databases Z,Z ′ ∈ Zn and subsets of possible outputs
S ⊆ R, we have P[A(Z) ∈ S] ≤ exp(ε) P[A(Z ′) ∈ S] + δ.

The parameter ε quantifies the algorithm’s privacy guarantee; smaller ε corresponds to stronger
privacy. A key property of differential privacy is that it is robust to post-processing.

Lemma 9 (Post-processing [19]). LetA : Zn → R be an (ε, δ)-differentially private algorithm and
let f : R → R′ be a random function. Then f ◦ A : Zn → R′ is also (ε, δ)-differentially private.
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We need a more precise notion of privacy when multiple agents are involved receiving different
information. For notation, we say two databases are i-neighbors if they differ only in the i-th entry.
Also, let A(Z)−i denote the vector of outputs to all players except player i.
Definition 10 (Joint Differential Privacy [29]). An algorithm A : Zn → Rn is (ε, δ)-jointly differ-
entially private if for every i ∈ [n], every pair of i-neighbors Z,Z ′ ∈ Zn, and every S ⊆ Rn−1,

P[A(Z)−i ∈ S] ≤ exp(ε) P[A(Z ′)−i ∈ S] + δ.

Finally, we can reason about the joint differential privacy of mechanism decomposed into a public
sanitized broadcast, i.e. as if on a “billboard,” and a private non-sanitzed portion. The following
lemma shows that privacy is still preserved under such a decomposition.
Lemma 11 (Billboard Lemma [26]). SupposeA : Zn → R is (ε, δ)-differentially private. Consider
any collection of functions fi : Zi ×R → R′, for i ∈ [n], where Zi is the portion of the database
containing i’s data. Then the composition {fi (Πi(Z),A(Z))} is (ε, δ)-jointly differentially private,
where Πi : Z → Zi is the projection to i’s data.

The final tools we borrow from differential privacy are the exponential mechanism [34], and the
ability to maintain a histogram estimate of values which arrive in one at a time. The primary tech-
nique for the latter involves data structures known as tree-based aggregations [20, 11]. This protocol
is a differentially private method for calculating the cumulative sum of elements from 1 to t for any
t ≤ T , for which at any round t the protocol can return an estimate of the number of elements prior
to round t, for which the entire execution is differentially private. We provide more details about our
instances of these algorithms in Appendices B.1.3 and A.1.1.

3 Utility-Approximate Bayesian Incentive Compatibility

In this section, we give an online algorithm (Algorithm 1) for learning the optimal auction which is
utility-approximate BIC. The main idea is to use differential privacy to explicitly control the amount
of information the auctioneer takes forward from round t to later rounds. We do so by maintaining
a differentially private estimate H ′i,t of each empirical bid distribution, and choosing future auctions
based only on this differentially private estimate. Thus, from the perspective of any bidder, her
behavior in round t has very little chance of affecting any of the auctions selected in later rounds.
In round t, we run Myerson’s mechanism with prior H ′i,t to compute allocations and payments.
Thus the one-shot mechanism in round t is exactly incentive compatible with respect to the current
round. The differentially private subroutine used to compute estimate H ′i,t is described in full detail
in Appendix A, with privacy, truthfulness, and revenue guarantees presented in Section 3.1.

Algorithm 1: Utility-Approximate BIC Online Auction
Parameters: discretization β, privacy ε, upper bound on support h, num. of rounds T
Initialize: H ′i,0 ← Uniform(0, h) for i = 1, · · · , n
for t = 1, · · · , T do

Receive bid profile vt = (v1,t, . . . , vn,t), rounded down to integer multiple of β
Run Myerson (Def. 4) with H′t−1 as prior and vt as bid for allocations/payments.
for i = 1, . . . , n do

Update H ′i,t via two-fold tree aggregation (Algorithm 3), giving as input vi,t
end

end

3.1 Privacy, Truthfulness, and Revenue Guarantees

We now prove that the learning subroutine of Algorithm 1 satisfies differential privacy (Theorem 12),
use this to prove the mechanism is utility-approximate BIC (Theorem 13), and show that Algorithm
1 achieves a o(1) additive approximation to the optimal revenue (Theorem 14).
Theorem 12. The stream of estimates {H′t}Tt=1 maintained by Algorithm 1 is (ε, ε/T )-differentially
private with respect to the stream of input bids {vt}Tt=1.

We emphasize that Theorem 12 does not claim that Algorithm 1 is itself differentially private, it only
states that the procedure rests on a differentially private subroutine. This distinction is critical: our
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algorithm is not differentially private in its selection of allocations and payments in round t. How-
ever, the information the mechanism carries forward (namely, the estimated empirical distribution)
is maintained in a differentially private manner. This is sufficient for guaranteeing that bidders’ be-
havior in round t does not significantly affect which auctions are selected in later rounds. This will
allow us to prove a utility-approximate BIC guarantee, but will not be sufficiently strong to argue
about bid-approximate BIC. For that, we will need to additionally ensure that the allocations (and
payments) in round t are differentially private (jointly differentially private), see Section 4.

We now turn our attention to proving a guarantee on the truthfulness of Algorithm 1, which will
lean heavily on the privacy guarantee given in Theorem 12. We note that if our mechanism were
(ε, 0)-differentially private then a result of [33], stating that any (ε, 0)-DP mechanism is 2ε-dominant
strategy incentive compatible.

Two issues arise if one were to try this approach in our setting. First, the entire mechanism is
not differentially private as discussed above. A bidder i’s behavior might have significant impact
on other bidder’s allocations and payments, and those bidders may as a result choose to behave
differently in later rounds based on that information. Thus we relax to the weaker incentive guarantee
of utility-approximate BIC, avoiding the issue of other bidders behaving differently in response to
activity from earlier rounds. Second, the stream of estimates maintained by our mechanism is (ε, δ)-
differentially private for δ = ε/T > 0 and not (ε, 0)-differentially private which is necessary for the
result of [33] to hold.
Theorem 13. Algorithm 1 is khε

(
2 + 1

T

)
-utility approximate BIC when ε < 1.

Finally, we consider the revenue-optimality of our proposed mechanism. Our revenue guarantees
will rely on tools developed and described in Appendix A.2. Recall that we use Rev(M;D) to
denote the expected revenue generated by the mechanismM on a value distribution D, and that D
and D′ respectively denote the joint distributions of true values and true values rounded down to the
nearest multiple of β. LetM∗H′t ,M∗D′ , andM∗D be the truly revenue-optimal mechanisms for the
distributions H′t, D′, and D, respectively. In each round of our mechanism, we get a sample from
D′ and run Myerson’s auction with H′t as the prior; that is, we runM∗H′t . We use Rev(M∗H′t ;D

′)
to denote the expected revenue we achieve in round t. The bidders true values are drawn from D
and we use Rev(M∗D;D) to denote the optimal expected revenue in any round. In this section, we
will compare the revenue Rev(M∗H′t ;D

′) of our mechanism to the optimal revenue Rev(M∗D;D).

The main result of this section, Theorem 14, bounds the difference between our average expected
revenue, 1

T

∑T
t=1 Rev(M∗H′t ;D

′), and that of the optimum. We show that over T rounds, with high
probability the average expected revenue is within an additive o(1) error of the optimal.

Theorem 14. With probability at least 1 − α, Algorithm 1 satisfies 1
T

∑T
t=1 Rev(M∗H′t ;D

′) ≥
Rev(M∗D;D)− βJ − 4hn2Õ

(
1√
T

+ 1
Tε

)
for regular distributions D and ε < 1.

Proof. We start by instantiating Lemma 34 for every round t instantiated with failure proba-
bility α/T . Then taking a union bound over all T rounds and summing over t, ensures that
with probability 1 − α, 1

T

∑T
t=1 Rev(M∗H′t ;D

′) ≥ Rev(M∗D;D) − βJ − 4hn2

T

∑T
t=1 γt for

γt =

√
log

n
α

2t + σ
t

√
log h

β log T

√
2 log

(
2hn
βα

)
and σ =

8 log T log
h
β

ε

√
ln

T log T log
h
β

ε

In the remainder of the proof, we bound 1
T

∑T
t=1 γt. (Recall that the α in Lemma 34 is α/T here.)

1
T

∑T
t=1 γt = 1

T

∑T
t=1

(√
log

nT
α

2t + σ
t

√
log h

β log T

√
2 log

(
2hnT
βα

))

≤

√
2 log

nT
α

T + 2σ log T
T

√
log h

β log T

√
2 log

(
2hnT
βα

)
= Õ

(
1√
T

+
1

Tε

)
The first inequality comes from the facts that

∑T
t=1

1√
t
≤ 2
√
T and

∑T
t=1

1
t = HT ≤ log T + 1 ≤

2 log T . The following equality come from plugging in the expression of σ and combining terms.

Hence, w.p. ≥ 1−α, 1
T

∑T
t=1 Rev(M∗H′t ;D

′) ≥ Rev(M∗D;D)− βJ − 4hn2Õ
(

1√
T

+ 1
Tε

)
.
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Notice that this statement says that if we set β, the discretization parameter to be o(1) in terms of T
then the revenue one can earn is a (1− o(1))-approximation to the optimal revenue.

4 Bid-Approximate Bayesian Incentive Compatibility

We now describe an algorithm for “training” a mechanism to achieve nearly optimal revenue in
an exact equilibrium, where each bidder bids close to their true value. This contrasts with the
result in the prior section, wich shows that bidders bidding their exact true values is an approximate
equilibrium. While the equilibrium we describe in this section is not quite a truthful one, we can
compare its revenue with the revenue of the optimal mechanism facing truthful bids.

The primary technical meat of this section has two parts. First, we describe how to modify Algo-
rithm 1 to get the stronger incentive guarantee of bid-approximate Bayesian incentive compatibility.
Theorem 13 gave utility-approximate BIC, which means all bidders behaving truthfully in all rounds
is an approximate Bayes-Nash equilibrium (BNE). Bid-approximate BIC means there is an exact
Bayes-Nash equilibrium where all bidders bid within η of their values. The main challenge here
comes from whether bidders change their behavior in later rounds based on the non-truthful behav-
ior of other bidders in earlier rounds.2 To make this jump, we guarantee that round t’s allocations
and payments leak very little information about a bidder’s behavior to other bidders. So, bidders will
have very little ability to condition on one another’s behavior in round t when selecting a strategy in
later rounds. To this end, we ensure that the allocations in round t are differentially private and the
payments in the round t are jointly differentially private, informally stated below.
Theorem 15. Algorithm 2 runs in polynomial time, is ηt-bid approximate BIC in round t for ηt =
c+ Õ(t−1/4) and achieves expected revenue Rev = OPT− c′ − Õ(t−1/4) for small constants c, c′.

The more precise result, given in Theorem 19, shows that under mild assumptions about bidders’
behavior, every equilibrium bid under our mechanism lies close to the true value in the bid space.
That is, in round t, we show that no bidder in equilibrium will underbid by more than a small factor
ηt. The main challenge in getting such a result requires us to bound the extent to which bidders’
behavior in the current round can affect their future utilities. If we can control this quantity, we
can control the amount by which people can game the system in the current round and also ensures
that bidders are unable to learn much about the value distributions of other bidders. The formal
revenue guarantees for our mechanism are are presented in Theorem 20 where we show that with
high probability, the average expected revenue obtained by our mechanism is close to the optimal
expected revenue of the mechanism with complete information about the value distribution of the
bidders (i.e., Myerson’s auction on D).

4.1 A mechanism with private payments and allocations

We now Algorithm 2 which is a Bid-approximate BIC Online Auction algorithm. The primary
challenge is to ensure that the allocation and payments in round t do not leak much information
about bidders’ behavior to one another. The mechanism ensures this by making choices which are all
jointly differentially private, ensuring that bidders do not substantially affect either the mechanism’s
state or what other bidders learn about them. The mechanism maintains a private estimate of the
empirical distribution (as before), and also computes prices and allocations in round t using jointly
differentially private algorithms. We use the exponential mechanism (Algorithm 6) for picking round
t’s allocation, black box payments (Algorithm 5) to pick payments in round t (which in expectation
yields payments close to the truthful payments). This additional step of ensuring round t decisions
are differentially private is crucial when bidders might condition their behavior in later rounds based
upon what the learn from round t (which might be the case in bid-approximate equilibria).

To describe exact equilibria, we need to argue about each bidder’s utility for modifying her bid, and
argue that shading by more than ηt hurts her utility. We do this using a punishing mechanism, which
penalizes bidders who shade their bid by using a strictly truthful mechanism with some probability
ρt in each round. Since we are going to show that there exists an equilibrium where in round t every
bidder bids with ηt of their true value, it will be convenient to define the round t equilibrium bid
distributions Ft = F1.t × · · · × Fn.t .

2This is not a challenge when we assume all bidders behave truthfully, since bidders won’t have non-truthful
behavior in earlier rounds to condition their behavior upon.
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Algorithm 2: Bid-approximate BIC Online Auction
Parameters: discretization β, privacy ε, upper bound on support h, num. of rounds T
Initialize: H ′i,0 ← Uniform(0, h) for i = 1, · · · , n
for t = 1, · · · , T do

Receive vector of bids bt = (b1,t, . . . , bn,t), rounded down to multiple of β
With probability ρt run mechanism StrictlyTruthful(bt) (Algorithm 4)
else

for i = 1, . . . , n do
Use H ′i,t−1 to calculate φi,t(bi,t) (Theorem 3)

end
Use exponential mechanism (Algorithm 6) to select allocation xt(φt(b))
Use Black box payments (Algorithm 5) to calculate payments pt(bt).

end
for i = 1, . . . , n do

Update H ′i,t via two-fold tree aggregation (Algorithm 3), giving as input bi,t
end

end

4.2 Privacy, Truthfulness, and Revenue Guarantees

In this subsection, we provide the differential privacy and incentive guarantees of Algorithm 2. We
refer to Appendix B for the and additional technichal details and proofs.

Lemma 16. Algorithm 2 is (3ε, 3ε/T )-jointly differentially private in the bids of users.

Lemma 17. Fix a round t, population i, and the bidder from population i in round t. This bidder’s
total utility in rounds t′ > t for misreporting in round t is≤ εkh(2+ 1

T ) more than truthful reporting.

Finally, we introduce an assumption we make about the equilibrium behavior of bidders facing this
mechanism. Informally, the assumption states that a mechanism run over many rounds should have
equilibrium bid distributions which have similar probability of any bid between adjacent rounds.

Assumption 18 (λ-Stable Bid Distribution). We say the mechanism M supports a λ-stable bid
distribution if it has some BNE with distribution of equilibrium bids Ft in round t such that for all
populations i and rounds t, there exist λt s.t. ‖Ft − Ft−1‖∞ ≤ λt.
Remark. Consider a mechanism with very similar behavior in round t versus t + 1: both the
mechanism’s distribution over allocation and payment rules in round t and t+1 are very close. If all
other bidders strategies from round t to t + 1 are also very close, then the utility for any particular
bid b from a bidder with valuation v from population i will be quite close, but that bidder’s utility-
optimal bid may or may not be identical or even particularly close in the two rounds.

This suggests that analyzing exact equilibria in iterated settings is quite complex, in that the distri-
bution over utility-optimal bids might shift quite substantially from round to round. So, mechanisms
and equilibria without this property may have highly erratic behavior, and such equilibria may not
support a learning procedure which competes with the (truthful) optimal revenue. Hence we assume
that the mechanism in Algorithm 2 supports a λ-Stable Bid Distribution with the condition that the
quantity ΣT :=

∑T−1
t=1

tλt

T = o(1). We now present the truthfulness gurantee of Algorithm 2.

Theorem 19. Algorithm 2 in round t is ηt-bid approximate BIC, i.e. in round t, any bidder i

with value vi,t reports bid bi,t which satisfies vi,t − ηt ≤ bi,t ≤ vi,t where ηt = h
√

8n2γt+6kε
ρtJ

,

γt =
√

log(2hn/βα)
2t +Σt+

σ
t

√
log h

β log T

√
log
(
hn
βα

)
, σ =

8 log T log
h
β

ε

√
ln

log T log
h
β

δ and δ = ε
T .

Let F′t be distribution of round t bids (Ft) rounded down to the nearest multiple of β. Let the
mechanism we run in round t on the bids we recieve from F′t beMH′t . The expected revenue we
achieve in round t is Rev(MH′t ;F

′
t) which we will compare with the optimal reveue Rev(M∗D;D).

We now present the main revenue guarantee for Algorithm 2, i.e we compare the average expected
revenue of Algorithm 2 with respect to optimal revenue. We refer to the Appendix B.4 for the proof.
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Theorem 20. Using Algorithm 2 for T rounds, with probability at least 1−α the average expected
revenue obtained by the mechanism over the T rounds satisfies,

1
T

T∑
t=1

Rev(MH′t ;F
′
t) ≥ Rev(M∗D;D)

−
(
hnJ2/3Õ( 1

T 1/4 ) + J lnn
ε + h

3ε ln J
kε + hJ2/3(12kε)1/3 + βJ

)
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